
ADAIG 5 NAA. POSTGrRADUATE SCHOOL MONTEREY CA F/S 9/2
PROGRAMMING WITH A RELATIONAL CALCULUS.(U)
SEP a1 8 J MACLENNAN

UNCLASSIFIED N52-81-013

l IIIIIEEEEII
IEEEIIEEEEIII
IIIMIIIIIII

*1 LEVEL z-
NPS52-81-013

NAVAL POSTGRADUATE SCHOOL
Monterey, California

DTIC
AELECT

*~SEP 2 9 1981

B

PROGRAMMING WITH A RELATIONAL CALCULUS

B. J. MacLennan. 80/10/21.

September 81

C. Approved for public release; distribution unlimited

Prepared for:

Naval Postgraduate School
Monterey, CA 93940

, ,

NAVAL POSTGRADUATE SCHOOL
Monterey, California

Rear Admiral J. J. Ekelund Jack R. Borsting
Superintendent Provost

The work reported herein was supported by the Foundation Research
Program of the Naval Postgraduate School with funds provided by the
Chief of Naval Research.

Reproduction of all or part of this report is authorized.

This report was prepared by:

/Assistant Professor of
Computer Science

Reviewed by: Released by:

GO~qlH.IBA&Ertairman WILLIAM M. TOLLES
Departme f puter Science Dean of Research

tI

ECRIGP ASMIN ITH EATIONPAL CALULU Dat Technical 0 e

S. ONT A OR GRNT NSR

J i) REEOMI ORNAT OCNMENAN IO ADEDRERSSMPEIN FR
2. GVT ACESSON N. REAIIN' CATALOG NMUM ER

PROGRMMIN WICH ASS RELCATIA ONALOWNUADIN

I7. SUPPLEMNTAR NOTESAT RGRN NMER4

Reatial Pograuatieg Fucinlcrhoolig eltoa Agba Rltoa
Calculus, ReAtos Appicaiv Lagags CobntrVr-i-ee

tha individudata, andoo in wihtepormtslsepreseone8a1

are usedOIN to NC repr E &AOE fdfeent bohthfrom aotlnd th ie) data CUTCAS.Fny sinc(e ople

DD I~ 173 DITON PINO 65IS SSOETIUNCLASSIFIED

SECURITY. OCLASSIFICATIONIAO (PhINSDL

UNCLASSIFIED
._UITY CLASSIFICATON OF THIS PAOfWhEn Date Entered)

manipulate with facility a much wider class of structures that other
very-high-level languages.

4'..i

i Accession For

NTIS GF.&I
DTIC TIB

OD

SICUftITY CL.ASSIICATION OiF TwIS lPAOE(ll~lfl Dae Entered)

Ir
PROGRAMMING WITH A RELATIONAL CALCULUS

B. J. MacLennan. 80/10/21.
Naval Postgraduate School

Monterey, CA 93940

CONTENTS

1. Introduction..1I

2. Classes and Relations..................................... 1
2.1 basic concepts...................................... 1

El2.2 relational descriptions............................. 2
2.3 converse.. 2
2.4 arrow diagrams...................................... 3
2.5 tables.. 3

3. Domains... 4

4. Functions... 4
4.1 basic concepts...................................... 4
4.2 higher level functions.............................. 6

5. Boolean Operations.. 8
5.1 logical connectives................................. 8
5.2 empty classes and relations......................... 9
5.3 Cartesian product................................... 10
5.4 subset relation..................................... 10

6. Limiting and Restriction.................................. 10

7. Relative Product.. 12

8. Structures.. 13
8.1 initial and terminal members........................ 14
8.2 higher level operations............................. 15

9. Sequences... 16
9.1 ordinal couples..................................... 16
9.2 catenation and consing.............................. 18

10. Binary Operations... 20
10.1 basic concepts...................................... 20
10.2 operations on binary operations..................... 21

11. Combinators 22

12. Ancestral Rltos....................25
12.1 definition.. 25
12.2 applications.. 27

13. Arrays.. 28
13.1 definition and basic operations..................... 28

13.2 relation to sequences............................... 28
13.3 other array operations.............................. 29

14. Scanning Structures....................................... 30
14.1 basic concepts...................................... 30
14.2 reduction of arrays................................. 31
14.3 reduction of sequences 32
14.4 scanning general structures......................... 33

15. Examples.. 34
15.1 payroll... 34
15.2 check issueing...................................... 35

16. Implementation Notes...................................... 35

17. Conclusions... 36

18. References.. 37

1. Introduction

In this report* we discuss relational programming, i.e. a
style of programming in which entire relations are manipulated
rather than individual data. This is analogous to functional
programming [11, wherein entire functions are the values manipu-
lated by the operators. We will see that relational programming
subsumes functional programming because every function is also a
relation. It is appropriate at this point to discuss why we have
chosen to investigate relational programming. The reader can
find a shorter introduction to relational programming in (121.

As we have noted, relational programming subsumes functional
programming; hence, anything that can be done with functional
programming can be done with relational programming. Further-
more, relational programming has many of the advantages of func-
tional programming: for instance, the ability to derive and
manipulate programs by algebraic manipulation. A well developed
algebra of relations dates back to Boole's original work and has
been extensively studied since then. Although relations are more
general than fupctions, their laws are often simpler. For
instance, (fg)-, = g-f- is true for all relations, but true
only for functions that are one-to-one. Also, relational pro-
gramming more directly supports non-linear data structures, such
as trees and graphs, than does functional programming. In rela-
tional programming the basic data values are themselves rela-
tions, whereas in functional programming there is a separate
class of objects (lists) used for data structures. One final
reason for investigating relational programming is that it pro-
vides a possible paradigm for utilizing associative and active
memories. As a teaser for what is to come, we present the fol-
lowing example of a relational program. We will take a text T,
represented as an array of words (i.e., T:i is the i-th word),
and generate a frequency table F so that F:w is the number of
occurences of word w in T. Now we will see (section 4) that T:w
is the set of all indices of the word w. If we let #:C be the
cardinality of a class, then the number of indices (occurences)
of w is just #:(T:w). Therefore we can write F = #T (Section 7).

2. Classes and Relations

2.1 basic concepts

Our relational calculus will deal with three sorts of
things: individuals, classes and relations. These can best be
illustrated by example. If 'x' is the name of an individual and
'CI is the name of a class, then 'xGC' means that the individual
denoted by 'x' is a member of the class denoted by 'C' (i.e.,

The work reported herein was supported by the Foundation
Research Program of the Naval Postgraduate School with funds

provided by the Chief of Naval Research.

-2-

that x has property C). Thus 'AristotleGman' would indicate that
Aristotle is a man, and '2Geven' would mean that 2 is an even
number. (The symbol 'G' is an abbreviation for Goti, which is
the Greek word for 'is'.)

If 'x' and 'y' are names of individuals and 'R' is the name
of a relation, then 'x R y' means that x bears the relation R to
y. For example,

Aristotle student Plato

means that Aristotle is a student of Plato. Also, '2 < 3' means
that 2 bears the less-than relation to 3, i.e., that 2<3. Where
there is little chance of confusion, Ix R yl will be written
'xRy' and 'xGP' will be written 'xP'. The notation that we have
introduced above will be extended to classes of classes, classes
of relations, relations among classes, relations among relations,
etc.

2.2 relational descriptions

If 'S(x)' is a sentence involving 'x', then a class descrip-
tion is an expression of the form 'R(S(x))'. This denotes the
class of all individuals, a, for which S(a) is true, i.e.,

a G R(S(x)) - S(a)

Similarly, if 'S(xy)' is a sentence involving 'x' and 'y', then
'R7(S(xy))' is a relation description which holds between a and
b whenever S(a,b) is true, i.e.,

a [R9(S(x,y)) I b <-- S(a,b)

To illustrate this notation we will define the converse of a
relation.

2.3 converse

The relation R-1 is called the converse of R, i.e.

xR-ly *-* yRx. Using our notation for descriptions we can
define,

R- 1 = R9(yRx)

As an example of a relation among relations, we define ' as the
relation that holds between converses:

r s 4- rs -

(Hence,

I

-3-

Some examples of converses are:

parent-1 =child

The following are easily proved properties of the converse:

(r-1)- I1 r
r -y s'r

2.4 arrow diagrams

Relations can be portrayed by "arrow diagrams" (9aase
diagrams). In such a diagram there is a node for each individual
related by the relation and an arrow from x to y whenever xRy.
For instance,

represents the relation R such that

bRa, cRb, dRb, eRd, eRe, bRe

and "xRy for all other cases. The effect of th converse opera-
tor is to reverse all of the arrows. Hence, R-1 is diagrammed:

R-1 =

2.5 tables

Relations can often be viewed as tables. For instance, the
relation R of the previous section can be shown as a table:

R
b a
c b
d b

e d
e e

of course, it makes no difference in what order we write the rows
of the table.

of|

-4-

The converse of a relation is obtained by simply exchanging
the columns of the table:

R-1

a b
b c
b d
d e
le e
e b

Of course, classes are represented by one column tables. For
instance the class C of primes less than ten is:

C

3. Domains

We often need to talk of the individuals that can occur on
the right or left of a relation. We say that x is a left-member
of R whenever there is a y such that xRy.

x Lm R *-* ay(xRy)

For instance, if 'x parent y' means that x is a parent of y, then
'Socrates Lm parent' means that Socrates is a parent. Right-
member and member are defined analogously:

y Rm R *-* ax(xRy)
z Mm R 4-* z Lm R V z Rm R

These satisfy the identities:

x Lm R 4-* x Rm R-1
y Rm R *-* y Lm R-1

4. Functions

4.1 basic concepts

Functions and relations are closely related. Consider the
predecessor relation, 'pred':

x pred y *-* x = y-l

5

Thus, x pred y says that x is the predecessor of y. The
corresponding arrow diagram is:

1 2 3 4 5

and the corresponding table is:

1 2
*2 3

3 4

4 5
..

since 1 pred 2, 2 pred 3, etc. Notice that, in this case, for
each right member x there is a unique left member y such that
y pred x. This y can be written using Whitehead and Russell's
[161 definite description:

2y(y pred x)

This can be read: the y such that y is a predecessor of x. A
more convenient way to write this is:

pred :x

In general, R:x means "the unique y such that y R x, i.e.

R:x = 7y(yRx)

This notation is meaningful only if there is a unique y such that
yRx, i.e.

yRx A zRx -=O y=z

That is, there is only one arrow leading to x. When this condi-
tion is satisfied for all x we call R left univalent, symbolized
by 'lun':

RGlun - xyz[yRx A zRx 4 y=z

The left univalent relations are more commonly called functions.
In a left univalent relation there is exactly one arrow leading
to each node. Consider the "absolute reciprocal" relation:

xRy *-* x = 1l/yI

This is diagrammed:

1/2 -

1/2 -2 ~*. -2.
1/3 3 3/

1/3 -3 -3

Since RGlun it is meaningful to write R:x, so we observe R: (-3)
* 1/3. We can find R:x by following back the arrow pointing to x

or by looking down the right column for x and taking the
corresponding element from the left column.

The concepts of right univalence and bi-univalence are
defined analogously:

RGrun 4-* Vxyz[xRy A xRz =* y=z]
RCbun 4-* RGlun A RGrun

Bi-univalent relations are also called bijections and one-one

mappings.

4.2 higher level functions

Of course, the converse of a function is not necessarily a
function. The 'sin' relation, defined so that y sin x means that
y is the sine of x, is left univalent but not right univalent.
Hence, we can write either y=sin:x or y sin x, but can express
the arcsine only by:

x sin -1 y

The notation sin-l:y is meaningless. Since f:x is meaningful
only when fGlun we will be careful to write f:x only when we have
previously shown (or it is obvious) that fGlun and x Rm f.

The fact that f:x may be meaningless makes it convenient to
use several other relations derived from f. One of these is the
plural description. If F is any relation and C is a class then
F!:C is the set of all y such that yFx for some x in C, i.e.,

F! = 2{z = 9[3-x(yFx A xGC)]}

The tabular interpretation of F!:C is simple:

F C F!:C

. " I

-7-

We see that, if F is any function, then F!:S is the image of the
class S under that function. Notice that the operation F!:S is
defined for all relations F and classes S, regardless of whether
FGlun or the members of S are right members of F. For these rea-
sons, it is generally safer to write F!:C than F:x.

Related ideas are the image and converse image of an indivi-
dual. If R is a relation, then c - x means that c is the class
of individuals related to x. This class is called the referents
of x, and is defined:

:x = 9(yRx)

The converse idea is that of the relata of y:

R:y = (yRx)

Like the plural description, R and R are defined for all R andall arguments.

Consider now the function =:

=:x (y=x)

Hence, ±:y is just the unit class containing y. Russell and
Whitehead (161 write this-i:y. Uonversely, if C is a single ele-
ment class, then ("-1):C selects the unique member of that class:

(t-) :C 7x(xGC)

It is thus a uniqueness filter. We will write this as 9:C:

The expression 9:C can be read "the C".

We will occasionally need to refer to the _relations that
hold between R and R or R and R, which we write - and -, respec-
tively:

R S -* R =S'
R ~S 4-* R S

The following are some properties of these operations:

= R

it R
R

It is often convenient to have names for domain extracting func-
tions, e.g., lem:R is the class of left members of R. These are

-- 98 --

-8-

simply defined using images:

lem = mrim =

mem = Mm

Of course the right and left members of a relation can be
obtained by taking its right and left columns, respectively, and
deleting duplicates.

R

lem:R rim:R

5. Boolean Operations

5.1 logical connectives

We will next investigate ways of combining relations and
classes. The simplest methods are just abstractions of the logi-
cal connectives used between propositions: Therefore, we define
the intersection, union, negation and difference of classes and
relations:

x(S A T) - xS A xT

x(R A S)y *-* xRy A xSy

x(S V T) *-* xS V xT
x(R V S)y *-* xRy V xSy

x(-S) *-* -(xS)
x(-R)y *-* -(xRy)

x(S-T) *-* xS A -(xT)
x(R-S)y *-* xRy A -(xSy)

x(S--*T) *-* xS -- xT
x(R--*S)y *-* xRy -- xSy

As an example of the use of these operations, consider our previ-
ous definition of Mm:

z Mm R *-* z Lm R V z Rm R

9

Using the union operation this can be written:

Mm = Lm V Rm

Similarly,

bun = lun A run

The logical connectives satisfy the usual properties of a Boolean
algebra (e.g., DeMorgan's theorem).

As an example of the use of these operations, we will define
the closed interval function, m..n, which is the set of integers
m, m+l, ..., n. It is just:

m..n = >:m A <:n

where > and < are the relations on integers.

5.2 empty classes and relations

It is useful to have names for the empty class and relation:

= (x~'x)
§ = 9'(x~x)

Hence, x4 is always false, as is xgy. These are most often used
for stating properties of relations and classes. For instance,

SAT =

means that classes S and T have no members in common.

The universal classes and relations are also useful:

For instance,

S VT =

means that every individual is either a member of S or of T.
Notice that the class of the right members of a relation is just
the image of the universe under that relation, i.e.,

rim:R = R!: -

lem:R = (R- £)!:)
mem:R = (R V R)!:

-10 -

5.3 Cartesian product

It is often useful to have the maximum relation that can
hold between two classes, i.e., the Cartesian product of those
classes. This is defined:

S*T = R(xS A yT)

The Cartesian product satisfies the following properties:

(st) -i_ tts
lem: (s~t) = s
rim:(s4t) = t
mem:(s*t) = s V t

sf(t A u) = (st) A (slu)
s*(t V u) = (sft) V (sfu)
sf(t-u) = (st) A (s*-u)
sf(t-u) = (s*-t) V (su)

s*i = 4#s M
sit = (s41) A (1It)

5.4 subset relation

Finally, we define the subclass and subrelation operations:

SCT *-* Vx(xS -4 xT)
RCS 4-* Vxy(xRy --> xSy)

The following are true:

sCt -4 (s*u)C(tlu)
sct -* (rls)C(r*t)
s(t A uCv -4 (s*u)C(tlv)
rgRel -- rC-
rGRel -* *CrsGCls - sC|
sGCls -ICs

where Cls is the class of all classes and Rel is the class of all
relations (we are ignoring typing here). These can be defined:

Rel = r:@ =
Cls = C:! = C:4

6. Limiting and Restriction

It is often useful to limit theileft or right domain of a
relation. Consider the relation x sinsi y1 which means that x is
an arcsine of y. We cannot write x = sin :y because sin - I is

- 11 -

not left univalent (i.e. it is not a function). If we restrict
y, the argument of sin, t? the range -w/4 to w/4, then there is a
unique x such that x sin y. Let S be the class of reals in the

*range -w/4 to w/4:

xS 4-* (-w/4<x) A (x<r/4)

then we will write

sin S

for the sine function with its arguments restricted to S. This
-function is bi-univalent, so it is invertible. If we call the

inverse of this restricted sine Arcsin:

Arcsin = (sinS)1

then it is perfectly meaningful to write Arcsin:x (if x Lm sin).
The right-restriction operation is defined:

x(RIS)y 4-* xRy A yS

The left-restriction is defined analogously:

x(S R)y x- xS A xRy

These notations can be combined to restrict both domains:

x (S R$T) y 4-* xS A xRy A yT

The combination siRls is so common that a special notation is
provided for it:

Ris = siRls

For instance, <AP, where xP *-* x>O, is the less-than relation
restricted to positive numbers.

The restriction operations are easily defined in terms of
intersection and Cartesian product:

s~r1t = r A (s~t)
r~s = r A (s*s)
s~r = r A (s*W)
Os = r A (#s)

6A

C R CR

x 2 =x xnE y

xn Iyn,

Other properties satisfied by these operations are:

s~t =S ilt
lem4 (sir) - s A lem:r
rim: (rls) = s A rim:r
lem: (rls) = r!s
rim:(sir) = r- :s

(str) - = (r-1)Is' (s~rlt - = f(r-l)ls

-1s (r t3()s

r T S r1ls=s r W: t

rls A rlt = r (s A t)
ris V rIt - rl(s V t)
(r*j)ls = r~s

7. Relative Product

If xRy is the relation "x is a son of y" and xSy is the
relation "x is a brother of y", then the relative product, RIS,
is the relation "x is a son of a brother of y." More formally,

RIS = 2{3y(xRy A ySz) }

Where there is little chance of confusion, we will write RS for
RIS. If f and g are functions it is easy to see that fig is the
composition of these functions:

x = fg:z
4-* x fg z

-* 3Y(x f y A y g z)
- 3y(xf:y A y=g:z)
- x = f:(g:z)

Hence, fg:x = f:(g:x).

It is convenient to have a notation for relative products of
a relation with itself. For instance, the "grandparent" rilation
can be written parentiparent, which we abbreviate parent . In
general,

if -13-

Ro= =3(mem:R)
Rl= R

=n+ (Rn) R R R(Rn)
R- (Rn) -I

Some obvious properties of the relative product are:

(rs)t =r(st)

r(s V t) =rs Vrt
(r V s)t =rt V st
r(s At) C rs Art
(r As)t Crt Ast

J.(rs) a- Jrim:r A lem:s)

r- 1 -1

(rsV 1 (S-1) (r l)
rmrn =rm+n (m,n>O)
(rmn rm (m,n>O, or rC-bun)
rmrn C rm+n (rG un)
rr - 1 = r-Ir =r (rC-bun)

lem:rs C lem:r
rim:rs Crim:s
Lmi = Rrn'
Rm = Lmi'

rO = Or=

rr = Ir = r where I R (x=y)

8. Structures

We have previously seen the use of arrow diagrams to
represent a relation. For instance,

ah

f e

represents the relation R:

- 14 -

R
a g
b if

c e
d

d e
e i
f f
f i

f
g h

8.1 initial and terminal members

Now, notice that the left and right members of R are:

lem:R = {a, b, c, d, e, f, g}
rim:R = { g, f, e, d, i, h }

We define the initial members of R to be those members which are
not pointed at by an arrow. Therefore, the initial members of R
are the left members that are not right members.

init:R = (Lm-Rm):R = {a, b, c}

The terminal members of a relation are defined analogously:

term:R = (Rm-Lm):R = {h, i}

When a relation is used to represent a data structure, the above
functions become important.

For instance, a sequence is represented by a relation with
the structure:

S = a1 a2 a3 ar1 an

In this case init:S is the unit class containing the head (first
element) of the relation (i.e., a1) and term:S is the unit class
containing the last element of the sequence (i.e., an). Simi-
larly, Sl(-init:S) is the sequence with its first element
deleted:

a2 a3 anl1 an

Hence, the following common sequence manipulation functions can
be defined (represented by lower and upper case alphas and ome-
gas):

- 15-

oc:S = 9 init: S "first"
w:S = 9 term: S "last"
CL:S = Sl(-init:S) "final"
A:S = (-term:S) S "initial"

The following properties of these relations are easy to show:

OC = cU'
i A' -=

.O' = 'A

More operations on sequences are discussed in the next section.

As another example of the use of 'init' and 'term', consider
i.' a relation representing a tree:

a

4 b

T CL d

j k
h i

Then, 9 init: T is 'a', the root of the tree, and term:T is {d,
h, i, f, j, k}, the leaves of the tree. The result is analogous
for forests. Given

P
F =aS

e f I +-

the set of roots is init:F and the set of leaves is term:F:

init:F = {a,i,g}
term:F = {c,e,f,g,h,j,k,l,m,n,t,u,v,w}

8.2 higher level operations

The set of nodes whose parent is n is just F- 1 :n. For

instance, the set of nodes directly descended from a root is

lF-,:(nit:F) = {b,h,jo,p,r}

The set of nodes that point to leaves is

F!:(term:F) = {b,d,a,i,op,s,r)

. J,.., -- ,. ,'...

-16-

These operations can be used for obtaining the maximum and
minimum of sets. Suppose '<' is the less-than relation on
integers and S is some set of integers, say {3,5,9}. Then

<S =

3 5 9

Now note that

init:(<AS) = {3}
term:((<XS) = {91

Hence, if s is any set of numbers, then the minimum and maximum
of this set are:

min:S = oc: (<AS)
max:S = u: (<XS)

These operations are only defined if S has two or more elements,
since an irreflexive relation cannot relate less than two ele-
ments. That is, an irreflexive relation when restricted to a
unit or empty class becomes the empty relation. Notice that we
can select the maximum and minimum based on any relation that is
a series (i.e., transitive, irreflexive and connected). If R is
any series then oc: (RAS) is the minimum (relative to R) and
w: (R*S) is the maximum.

The following are simple properties of these operations:

init:r = term:(r -1)
term:r = init:(r -)

init C lem
term C rim
init:(r)(s) = term:(r-lxs)

init:(r V s) C init:r V init:s
init:r A init:s C init: (r A s)
term: (r V s) C term:r V term:s
term:r A term:s C term: (r A s)
init:(s*t) = s-t
term:(sft) = init:(sft)- I = init:(t#s) = t-s

9. Sequences

9.1 ordinal couples

In this section we will continue the discussion of sequences
begun in the last section. We saw that it was easy to define the
following operations on sequences:

- 17 -

oc:S = 9 init:S
Lu:S = 9 term:S
1:S = (-inflt:S)is
A:S = S (- term:S)

This provides us with functions for taking sequences apart. We
will define the ordinal couple or pair, which puts them together.
If x and y are two objects, then 'x,y' is the relation that
relates x and y but no other objects.

(x,y) =
x y

That is, u(x,y)v if and only if u=x and y=v. This is formally
defined by:

x,y = uv(u=x A v=y)

This notation will be taken to be right associative, i.e.,

x,y,z = x,(y,z)

Observe that

oc: (xy) = x
i,: (x,y) = y

It will occasionally be convenient to write ordinal couples in a

vertical format:

This notation is extended for relations of more than one pair:

The Y2 - yn)= (Y1)V.(Y 2)
.

V ..)

The class of all the ordinal couples (or pairs) that can be
made from the classes S and T is:

SXT = (axy[xG S A yGT A p=(x,y)])

There is obviously a close relation between sXt and sft. Later
we will say that set is a Currying of sXt. Note that

(x,y)GSXT 4-* x (StT] y

We will define a convenient notation for sequences of two or
more elements:

< X11 X2 ,..., Xn> = (XlX 2) V (x2 ,x3) V ... V (Xn.lXn)

Therefore the sequence <a,b,c,d,e> is just

18-

a b c d e

Also, note that,

xI 2

" x,..X> xl x 2 ... xn-l) x2 X 3

x, x2, X> = (x2 x3 ... xn
Xn-i Xn

9.2 catenation and consing

If s and t are sequences then we can define an operation
's't', which is the catenation of s and t. To form this catena-
tion we must hook the last element of s to the first element of
t:

S t t n = sI-' m n
Therefore x [s't] y if and only if x s y, or x t y, or x=w:s and
y=c: t. Hence,

s't = s V (wu:s, oc:t) V t

The catenation operation is only defined for sequences,
which are required to have at least two elements (since an irre-
flexive relation with less than two elements is the empty rela-
tion). Note that we can extend the definition of sequences so as
to allow length one sequences by making the relation reflexive.

s V (= X mem:s)

Q Qo !Z_ ..o*
Si s-2 s3 Sn

The one element sequence is then:Q
So = S)

The full ramifications of this definition of sequence have not
been investigated.

How do we add a single element to the left or right of a
sequence? The "cons left" and "cons right" operations are easy
to define:

SCxl

-19-

x cl s = (x, oc:s) V s

s cr y = s V (wu:s, y)

It is easy to show that if s is a sequence, then:

o:(x cl s) x
a: (x cl s) = s

Lu: (s cr y) = y
A:(s cr y) = s

(cr:s) cl (D.:s) = s, if #:s > 2
(A:s) cr (w:s) = s, if #:s > 2

Also, if s is a sequence, then s V (w:s, oc:s) is a ring formed by
joining the last element of s to the first element.

If s is a sequence, then s-1 is the reverse of s. Hence,

rev:s = s1

cc: s = U: s- 1

wu: s = cc: s - 1

A:s = (a:s-l) - I

al:s = (A:s-1)-i

(s-t)-i t-l-s-i
(x cl s) - = s - 1 cr
(s cr x) - = x cl s

(x,y)- 1 = (y,x)
< X I, X 2 ,-., = , x2 , Xl>

1 x2 . . X 2 .. Y

S Y2 "-"" = 1l x2 ... xn)

If S is a sequence and x Mm S, then S-l:x is the successor
of x in S and S:x is the predecessor of x in S (if these exist).

Ss-l:x = successor of x in S
S:x = predecessor of x in S

These are convenient ways of moving around within a sequence.
Also, note that if s is a subsequence of t then sCt.

Some additional identities are:

oc! : (SXT) = S
Lu! : (SXT) - T

XI
- 20 -

Finally, we will state the formal definition of a sequence:
a relation is a sequence if it is a connected irreflexive bijec-
tion. That is,

sequence = connex A irrefl A bun

sGirrefl - s C s-

sGconnex *- lem:s init:s V rim:s
A rim:s term:s V lem:s

10. Binary Operations

10.1 basic concepts

In this section we will discuss our approach to binary
operations - that is, to functions with two arguments and one
result. We have already seen how unary functions are connected
to relations. For instance, we can write the fact that y is the
sine of x by either:

y sin x

or

y = sin:x

Since we only deal with binary relations, we will have to have a
new convention for handling binary functions. This convention
is: we will combine the two arguments of an operation into a
pair. For instance, we can define a relation 'sum' such that

x sum (y,z)

if and only if x is the sum of y and z. More formally:

sum = 5(a=(y,z) A x=y+z)

We can use our colon convention as usual, e.g.,

x = sum:(y,z) *-* x sum (y,z)

Now, it would be inconvenient to have to invent names, such as
'sum', for each operation, such as '+'. Hence, we will adopt a
systematic convention for making such names: either placing the
conventional infix symbol for the operation in parentheses or
underlining the symbol. For instance,

x±(y,z) *-* x = +:(y,z) 4-* x = y+z

In fact, if w is any infix operation symbol, we will explicitly
define its meaning by

-21-

xWy = w: (x,y)

This notation will permit us to manipulate in a more regular
fashion the usual arithmetic operations (+, -, *, /) as well as
the relational operations (e.g. A, V, X, 4, i , , *, ','). For
instance, if S is a class of classes, then

(A! :SXS
is the class of all pairwise intersections of members of S.

10.2 operations on binary operations

It is often convenient to be able to generate simple rela-
tions from a binary operation. Following Russell and Whitehead,
let w represent any binary operation. We define:

wz = 9(x = yf'z)

yw = I 2(x = yrz)

Hence,

x(-l)y *-* x = y-1

therefore (-1) is the predecessor relation. Similarly,

x(l+)y *-* x = l+y

therefore (1+) (or (+1)) is the successor relation. These can be
used as functions:

(-l):x x-1
(+i):x x+l

This convention makes it very easy to form more complex func-
tions. For instance, if we want

f:x = sin:tl/x)

then we can define

f = sin(l/)

To see that this works:

f:x = (sin(l/)I:x
= sin:((1/):x]

= sin:[1/x]

Now observe the action of the (x,) and (,y) functions:

(x,):y = (x,y)
(,y):x = (x,y)

- 22 -

Therefore, for any binary operation w (except ',') we can define

Wz " W(,z)

yw = W(y,)

Let's see why this works:

(y'):z = [u(y,)]:z
= .: C[(y,) :z]I

S:(y,z]

= ywz

(wz):y is analogous. In general, if f is a binary function, then
f(x,) and f(,y) are the "partially instantiated" unary functions.
This is the effect of Curry and Feys "B" combinator [5].

Since S- 1 is the reverse of a sequence, wl' is the reverse
form of an operation. For instance, -' is the reverse subtract
operation:

-' (xy) = -: (': (x,y))
= -: (y,x)

=y-x

Thus -' can be read "subtract from" and /' can be read "divide
into". This is Curry and Feys "C" combinator (see the next sec-
tion).

11. Combinators

In this section we will discuss several powerful operations
for manipulating relations. These are called combinators because
of their similarity to the combinators of Curry and Feys [5].

The first combinator we will discuss is the paralleling of
relations, 7, which is defined:

(u)Rx uRx A vSy

So, if f and g are functions,

*(4 :(yX) = 0 : X)
Hence, f is the element-wise combination of f and g. For exam-
ple, if we want f:(x,y) = sin:x + sin:y, we can write

f = (+)sin

since

-23-

f (+) s : ()

One of the simplest combinators described by Curry and Feyscancellator, K, defined so that K:x is a func-

tion such that (K:x):y = x for all y. That is, K generates con-stant functions. Since K:x is a relation that relates x to
everything, we cin define it:

K

where i = 9-1 is the unit class generator. To see that this

works, note that

K:x = (t)i:x = (i:x)#T

and therefore that

u(K:x)v 4-* u((i:x)44]v
- uCi:x A vG! *-* u=x

Therefore, (K:x):v = x.

Another combinator is the elementary duplicator, W, defined
so that

(W:f): x f:(x,x)

If we define :x = (x,x) then it is easy to see that W:f is just
fA. For instance, (*)A is the squaring function:

(*):n = (*) :(L:n)
- (*):(n,n) = n*n = n

t should be clear that Backus' [f,g] combining form is just our
since

f f (f~x)
Since this combination is so common we will adopt a special nota-
tion for it:

Hence, fj:x = (f:X)
Some of the properties satisfied by these combinators are:-----

r1
-24-

R T -~

S a=

T RI.RmS

a~ it

(f:g: =j (f'x)(gSx

Fo intne (!':ii s h prtintaIiestesto

AsaIxml fths obntr t is easy to seew that

f = j:(+)(*)A,2*

-25 -

is just the function f:x - x2+2x. This can be written more

clearly using the notation of our relational calculus:

f

Another combinator defined by Curry and Feys is the '_ combi-
nator:

[q:(fg)] :(x,y) f:(g:x,g:y)

This is simply defined by

!t: (f,g) 4

so that
'II =

Therefore, if

f = _:(+), (*)Z)

then f:x = x2+y 2 .

One final operation we wish to define in this section is
"Currying". This relates a relation to the correponding class of
pairs. If S is a class of pairs, then Curry:S, the Currying of
S, is the relation R such that xRy if and only if (x,y)GS. For-
mally,

Curry:S = R[((x,y)GS]

The inverse operation, Curry-l:R, is also useful.

Some properties satisfied by these combinators are:

Curry:(SXT) = StT
(K:x)f = K:x
f(K:x) = K:(f:x) = Kf:x

S= I:

12. Ancestral Relations

12.1 definition

Carnap (2] defines the relation of a property p being
hereditary with respect to a relation r:

p Her r 4-* Vxy{x3p A x r y -* yGp}
a r d !:p Cp

This leads to the definition of the ancestral of R of the first

26

kind as that relation which preserves all the hereditary proper-
ties of R. This is also called the transitive closure of R:

x R* y *-* x Mm R AVp(p Her R A xQp --> yGp]

For example, if xPy means that x is a parent of y, then xP*y
means that x is an ancestor (or the same as) y. The ancestral of
the second kind is also useful:

R+ = R*IR

Thus, P+ means "ancestor" in the colloquial sense. The easiest
way to visualize the meanings of the ancestrals is by their
expansion as infinite unions:

= R0 V R1 V R2 V RV
R+ = R1 V R2 V R3 V R4 V ...

Here are some useful properties of the ancestrals:

R + = R*-(=) =R*-R

xR*y 4-* _-n[n>O A xRny]

R0 C R
Rn C" R*, for n>O
Rn C R+ , for nTO

RJR+ - R +

R C R*
R+ -R(R*

R =R V R

(R:)-l = (R-)*

(R =(R-1+

(ros) * C r*As

Ancestral relations are always transitive. Notice that > and >
for integers can be defined:

>*5 = (1+)+

The ancestral "fills out" all of the paths in a structure. For
instance, if

R = al a2 a3 a4

then

0- -

-27-

12.2 applications

Suppose that S is a sequence and we wish to find the first
member of S which satisfies some property P. First form the clo-
sure S+ , so that for any two members of S+ we can tell which is
first. Next, eliminate from S+ any members that do not satisfy

+ +P: S *P. Then, oc: (S XP) is the first member of S satisfying P.

Next we will consider a simple character manipulation exam-
ple: itripping leading blanks from a string. Note that
x (y cl) z means that x is a result of consing 0 or more y's on
the front of z. Hence,

z [(y cl)*] I x

means that z is the result of stripping one or more y's from the
front of x. To get the desired result it is only necessary to
restrict the left domain of this function to be sequences that
don't begin with a y. Suppose Y is the property of beginning
with a y:

xY *-* y- o:x -* y oc x -* x G oc:y

Therefore, the function to strip leading y's from a sequence is:

(-OC :y) i C[(y cl) * -

Before we leave the topic of ancestral relations, it will be
useful to investigate their use as a means of iteration. Suppose
that F is a function (i.e., left univalent). Then, since

F* = F0 V F1 V F 2 V ...

we will have yF*x if and only if for iome n, y = Fn:x. In gen-
eral* there may be many such n, so F may not be left univalent.
If F is to be a function, it is necessary to pick a
cqndition T (a cliss) that is only true for one of F i:x, F:x,
F':x,.... Then T F is just the function sought; it is roughly
equivalent to

while -T do F

Analogously, TtF+ is roughly equivalent to

- 28 -

repeat F until T

13. Arrays

13.1 definition and basic operations

An array is just a function from a contiguous subset of the
integers to some set of values. If A is an array and i Rm A then
A:i is the i-th element of A. Similarly, if I C m:A is a set of
index values then A!:I is the corresponding set of array values
and AII is the subarray of A selected by those indices.

It is easy to define multi-dimensional arrays: they are
just arrays whose elements are selected by sequences of integers,
e.g. M:(i,j). If M is a two-dimensional array, then M(i,) is the
i-th row of M and M(,j) is the j-th column of M. Also, if I is a
set of row indices and J is a set of column indices then M (IyJ)
is the submatrix of M selected by these sets. It is easy to see
that M' is the transpose of M, since

M':(i,j) = M: (': (ij)) = M:(ji)

More generally, if P is a permutation function (i.e. a bijection
from an index set into itself) then AP is the result of permuting
A by P.

Suppose x is an element of the array A (i.e., for some i,
x=A:i). Then X:x is the set of all indices for which x=A:i.
Therefore we can find the index of the first occurence of x in A
(i.e. APL's iota operator) by minX:x. In general, if P is some
property (i.e. class), then A .:P is the set of indices of all
elements of A that satisfy P. A sorted reflexive sequence of
these indices is just < A (A- !:P)

13.2 relation to sequences

It is easy to convert arrays to sequences and _ versa.
Suppose all the elements of A are distinct, then A- s a uc-
tion that returns the index of an element of A. We want to
define a sequence S such that xSy if and only if x preceeds y in
A, i.e. the index of x is one less than the index of y.

xSy *-* (A-I:x) = (A-liy)-l- (A-A:X) (-I1 (A- :Y)

4-* x(AI(-l)IA-]y

Hence, S = A(-I)A - 1 .

Next, we will consider the opposite process: converting a
sequence to an array. Suppose we have a sequence:

I L- , I , I I ~ lI -Ill

-29 -

S a 0 a1 a a3

We wish to convert this to an array:

ao 0-.0
A = alsol

a 3 --aiw 3

Thus, for each element ai in the sequence, we must find its index
i in the resulti*g array. If we can define a relation R such
that R:a.=i then R - will be the array we seek. Now R:a i is just
the number of predecessors of ai in S. That is, a has no prede-
cessors, so R:a 0 = 0; a2 has two predecessors, so R:a 2 2, and
so on. Since S defined an immediate predecessor relation, S
defines an ancestral predecessor relation:

S+ a 0 al a 2 a 3

The set of predecessors of any element a is then S+:a, e.g.

S+:a 2 [a 0 , a,}

The size of this class is then the desired index:

S+:a 2) = 2

Hence, R:a = #:(S :a), so R = #S : . Now, we know that A is R- 1
so we can define the function saO which converts a sequence into
a 0-origin array:

sa0:S =(#S

To produce a 1-origin array, the only alteration is:

sa:S = (#S) -

13.3 other array operations

Next we will consider the concatenation of arrays. If A is
an array such that A:i = ai , then we can write A:

A = (al,l) V (a2 ,2) V ... V (am,m)

where m is the length of the array. Similarly, suppose that B is

- 30 -

an n element array, then the concatenation of these arrays is

A cat B - (al,l)V...V(am,m)V(bl,m+l)V...V(bn,m+n)

We can see that A cat B = AVB' where B' results from B by shift
its indices by m:

B' = (bl,m+l) V ... V (bn,m+n)

How do we compute B'? Observe:

xB 'i 4-* xB (i-m) - xB([(-m) : i] - xB (-m) i

Hence, B' = B(-m) and A cat B = A V B(-m), where m is the length

of A. The length of .\ is just #rim:A, so

A cat B = A V B(-#rim:A)

We will finish our discussion of arrays by investigating the
generation of sorted arrays. Let S be a set of integers to he
sorted, then <IS is a structure which relates lesser elements to
greater elements. Now if x is any element of the set, (E S) :x is
the set of all elements less than x. Thus [(S]:x is the
number of elements of S less than or equal to x. This is just
the index of x in the sorted array we seek. Hence if A is t e
sorted array, xAi if and only if i[# FXS]x, so A = t#(<] .
Of course this can be generalized to any ordering relation.

14. Scanning Structures

14.1 basic concepts

In this section we will discuss several methods for scanning
structures, that is, for applying a function to each element of a
structure and accumulating the results. Since no one method has
yet been selected, this section should be taken as a report of
work in progress.

A general paradigm for processing a structure, such as a
file, is the following:

1. Perform some initialization.

2. Read the next (or first) element of the file.

$ 3. Take this value and the results of processing the previous
values.

4. Process these to yield new cumulative values and continue
from step (2).

(- 31 -

5. When the end of the file is reached, return the accumulated
result of processing all of its elements.

A simple form of this appears in APL's reduction operation:

+/V = Vl+(... (Vn l+Vn) ...)

A more general form is Backus' insert:

/f:<xl,...,Xn> = f:<xl,... f:<Xnl,xn>...>

Our first example of scanning structures will be to express this
operation in the relational calculus.

14.2 reduction of arrays

We are given an n element array A and wish to compute:

t = A:n + A:(n-l) + ... + A:2 + A:l

where we have assumed that the right members of*A are l..n. We
saw in the section on ancestrals that T F will iterate the
application of F with T used as the termination condition. Con-
sider how the analogous loop would be written in Pascal:

S := O; i := O;
while i~n+l do

begin S :-S+A[i]; i := i+l end

On each iteration two functions are performed: S is incremented
by Ati] and i is incremented by 1. Let's represent the state of
the computation by a pair (s,i), where s is the cumulative sum so
far and i is the index of the next element to process. We will
use F to represent one processing step, so that, if (s,i') is
the new state, we can solve for F as follows:

::)
/s+A : i

= (i+l)

= (+ii i)

= \(+l)w: (s,i)

Hence, F = ()

- 32 -

It remains to determine the termination condition, T. If x
is a state, i.e., a pair (s,i), then xQT when i=n+l. Hence, xQT
when u:x = n+l, so

xGT 4-* u:x = n+l
4-* (n+l) w, x
- x G M: (n+l)

Henie, T u:(n+l). The final state, xf, containing the sum is
T'F-: xi, where xi=(0,1) is the initial state:

xf = (T{[F*): (0,)

Now, the total t is just ac:xf, so

t = cc(T F* (0, 1)

We can generalize this to any function f with initial value i:

t = cc(T F*) : (i,l)

where F =

This result can be improved by directly extracting the
result from the final state. That is, we want to define a filter
such that t = 6F- :(i,l). Hence we want t9xf, so

txf *-* t X (t,n+l)

Now, note that [,n+l]:t = (t,n+l), so

(t,n+l) [,n+ll t

by the definition of ':'. Therefore 0 = [,n+l] - I and we have the
simplified formula

t = (,n+l)-lF*: (i,l)

14.3 reduction of sequences

Next we will consider the scanning of sequences. Suppose S
is a sequence:

S = <Sl, S2 , ... ,nEOF>

where EOF is an "end marker"; it can be any value. Now, we wish
to find the result

th s f S f S 2 f ... f Sn

that i s

- 33

for some function f and starting value i. The state can be
represented by a pair (t,s), where t is the result so far com-
puted and s is the rest of the sequence to be processed. Hence,
(t',s') = F:(t,s) where t' = f: (toc:s) and s' = a:s. Therefore,

(t:) (f:(t~cc:s) (: (tIs))!a s (QU: (t,s)t

Hence,

What is a ter:ainal state? Notice that i:<sn,EOF> =@, so a
terminal state will have the form (r,@). Hence,

r = (,§)-F*: (i,S)

To put this in a more useful form, we will define a function f@i
such that r = (f@i):S. This is simply

f@i = (,§)- 1

Then, the sum of the elements of a sequence S is just (+)PO:S.

14.4 scanning general structures

It is often useful to scan a structure while performing some
processing at each node. When the data structure is a sequence
this amounts to APL's reduce operator and Backus' insert opera-
tor. We will define a scanning operation that works on a more
general class of structures. This operator can be understood
intuitively as follows: The state of the scanning process is
represented by a set of "read heads" each of which is "positioned
over" a node and holds state information accumulated from the
nodes it has already visited. A node can he processed when a
read head has moved to that node over each edge which leads into
the node. When this occurs a processing function is applied to
the node (as first parameter) and the union of the state informa-
tion of each of the read heads (as second parameter). The result
of this processing step becomes the state information associated
with a new set of read heads which are advanced along each edge
leading out from the node. The processing of the structure is
completed when all read heads have arrived at terminal nodes
(hence this scanning operation is not defined for cyclic struc-
tures). Scanning a structure is started by positioning a read

* head with initial state information over each initial node.

The scanning operation is symbolized by fli, where f is the
processing function and i is the initial state for the read

*heads. For instance, if V is a vector, (+)IO:V will scan the
elements of V using (+) (i.e. APL +/V or Backus' (/+):V). For a

- 34 -

more interesting example, suppose T is an attributed parse tree,
E is a function that evaluates attributes and B is the initial
set of attribute bindings. Then EIB:T propogates the values of
inheritid attributes down to the leaves of the tree. Conversely,
EIB:(T) propogates the values of synthesized attributes back to
the root. Hence, repeated applications of EIB and (EIB)' will
evaluate all of the attributes. Of course, this program will
work just as well if T is a forest of parse trees. The I opera-
tor is still undergoing evaluation as it is one of several possi-
ble structure-directed scanning operations.

15. Examples

In this section we will give several examples of relational

programs.

15.1 payroll

Suppose we have a file I of employee records, where r = J:n
is the record for the employee with the employee number n. We
will suppose that employee records are functions defined so that:

r:N = employee name
r:H = hours worked so far this week
r:R = pay rate

We are given an update file U such that U:n is the number of
hours worked by employee n today. We wish to generate a new pay-
roll file '.

SOLUTION: Let r = J:n and r' = J':n be the old and new
employee records. It is clear that r' is the same as r except
for its H field. In order to modify part of a relation, we will
use the Md function defined by:

Md:(S,R) = R V S*(-Rm:R)

Then, if h' represents the new value of the H field, the new
employee record is

r' Md:(r, (h',H))

where h' is just the cumulative hours worked:

h' -- (:n):H + U:n

Therefore, by the definition of ':

6':n = r' - Md:(§:n, (h',H))

To find 4' we must factor out the employee number n. To do this,
note that (:n):H = (:H):(J:n) = (:H)I:n. That is, (:H)6 is a

- 35 -

slice of the payroll file: the hours worked for each employee.

Therefore,

h' = (:n):H + U:n = (:H)c:n + U:n

(+)(.LUi:n

Now, define the updating function u by

u:n :n, H

= , () i :n

Then, §':n = Md:(I:n,u:n) = Md4.:n Therfore, the solution to
our problem, the new payroll file, is

= MdM

where u = (,H) (+)- -

15.2 check issueing

Suppose we wish to take the payroll file from the previous
example and generate checks for the employees. We will assume
that a function C is available such that C:(nm,p) returns a check
in the amount p made out to the name nm.

SOLUTION: We will ignore overtime computations. Hence, if n
is an employee number then :n:N is his name and

p:n = 4:n:H * :n:R

is his pay. Hence, his check c:n is c:n = C:(nm,p:n) = C: n

= C:((:N):n) = CL' N111:n

Combining these we have the file F mapping employee numbers into
checks:

F = C(:Nt

from which we can factor out the old payroll file:

F = C

If we just want a set of checks, this is Lm:F.

16. Implementation Notes

The primary goal of our investigation has been to determine
if relational programming is significantly better than

-36-

conventional methods. It would be premature to devote much
effort to implementation studies before it is even determined if
relational programming is an effective programming methodology.
However, a brief discussion of implementation possibilities is
probably not out of line.

The most obvious representation of a relation is the exten-
sional representation, in which all the elements of a relation or
crass are explicitly represented in memory. There are many kinds
of extensional representations, such as hash tables, binary trees
and simple sorted tables. Of course, performance can be improved
through the use of associative memories and active memories (in
which each memory cell has a limited processing capability).

Some relations and classes will be so large that it is
uneconomical to represent them explicitly in memory. In these
cases an intensional representation [11] should be used. Here a
class or relation is represented by a formula or expression for
computing that relation or class. Operations on the class or
relation are implemented as formal operations on the expression.
This is feasible because of the simple algebraic properties
satisfied by relations. It can be seen that an intensional
representation is really just a variant of a lazy evaluation
mechanism [9, 101. Sometimes an intensional representation is
necessary; for instance, relations of infinite cardinality, such
as the numerical operators and relations, require an intensional
representation.

Although the programmer could be allowed to choose between
extensional and intensional representations for his relations,
this is not necessary. It is probably feasible, and certainly
higher level, to have the system choose representations on the
basis of cardinality estimates of the classes and relations
involved. The algebra of relations is regular enough that many
of these decisions can be made at compile time. Any that can't
can be deferred to run-time when exact cardinality information is
available. See (14] for related techniques.

17. Conclusions

Of course, we are not the first to propose introducing
aspects of a relational calculus into programming. Codd [41 has
used a relational calculus as the basis for data base systems.
Although he defines several operations on relations (viz., premu-
tation, join, tie, composition, and restriction), this--mall set
of operations is insufficient for general purpose programming.
These remarks also apply to Childs' reconstituted definition of
relations [3], which are also oriented towards data bases. Feld-
man and Rovner [6] augmented Algol with several relational opera-
tors for associative access to a data base. Their operations,
which are our plural description and image, are quite limited,
being based on a traditional von Neumann language.

-37-

One general purpose language that does make extensive use of
sets and relations is SETL (71, which provides most of the fami-
liar operations on sets (e.g., union, intersection, difference,
powerset, image). SETL differs from relational programming in
three significant respects: (1) it can only handle finite sets,
(2) many operations must still be performed in a word-at-a-time
fashion using the set former, and (3) it resorts to conventional
control structures.

Finally, we must mention "logic programming" systems, such
as PROLOG (15, 81, which use predicate logic to describe computa-
tional processes. These systems also differ from relational pro-
gramming in several significant respects: (1) they have a word-
at-a-time programming style due to the use of variables
representing individuals in the clauses of the program, and (2)
they are implemented using a resolution theorem prover, whereas a
more conventional procedural implementation suffices for rela-
tional programming. Essentially the same remarks apply to
Popplestone's relational programming [13], which is like logic
programming except that it uses "forward inference" rather than
"backward inference".

In summary, no other programming style that we are aware of
combines the universal use of relations with a rich set of opera-
tions on those relations that can be implemented in a determinis-
tic, procedural way. It is hoped that the preceeding discussion
has made plausible some of the advantages claimed for relational
programming in the Introduction. Considerable work remains to be
done in evaluating the effectiveness of a relational calculus as
a programming tool. For instance, the optimum set of combinators
and relational operators must be selected. Another non-trivial
problem is the selection of a good notation for the relational
calculus. More from convenience than conviction we have used the
notation of (16] and (2]. Making relational programming an
effective tool will require designing a notation that combines
readability with the manipulative advantages of a two-dimensional
algebraic notation. This is all preliminary to any serious con-
siderations of software or hardware implementation techniques.

18. References

(1] Backus, J. Can programming be liberated from the von Neu-
mann style? A functional style and its algebra of pro-
grams, CACM 21, 8 (August 1978), 613-641.

(2] Carnap, R. Introduction to Symbolic Loic and its Applica-
tions, Dover, 1958.

(3] Childs, D.L. Feasibility of a set-theoretic data structure
based on a reconstituted definition of relation. IFIP 68
Proceedings, 420-430, North-Holland, 1969. - -

- 38 -

(4] Codd, E.F. A relational model for large shared data banks,
CACM 13, 6 (June 1970), 377-387.

(51 Curry, H.B., Feys, R. and Craig, W. Combinatory Logic, I,
North-Holland, Amsterdam, 1958.

[6] Feldman, J.A. and Rovner, P.D. An Algol-based associative
language, CACM 12, 8 (August 1969), 439-449.

[7] Kennedy, K. and Schwartz, J. An introduction to the set
theoretical language SETL, J. Comptr. and Math. with Appli-
cations 1 (1975), 97-119.

[8] Kowalski, R. Algorithm = logic + control, CACM 22, 7 (July
1979), 424-436.

(9] Henderson, P. Functional Programming Application and
Implementation, Prentice-Hall, 1980, 223-231.

[10] Henderson, P. and Morris, J.H., Jr. A lazy evaluator,
Record 3rd ACM Symp. on Principles of Programming
Languages, 1976, 95-103.

(11] MacLennan, B.J. Fen - an axiomatic basis for program
semantics, CACM 16, 8 (August 1973), 468-474.

(12] MacLennan, B.J. Introduction to Relational Programming,
Computer Science Department Technical Report NPS52-81-008,
Naval Postgraduate School, 1981.

(131 Popplestone, R.J. Relational programming, in Hayes, J.E.
et al. (eds.), Machine Intelligence 9, Halsted Press, 1979,
3-26.

(14] Schwartz, J. Automatic data structure choice in a language
of very high level, CACM 18, 12 (December 1975), 722-728.

[15] van Emden, M.H. and Kowalski, R.A. The semantics of predi-
cate logic as a programming language, JACM 23, 4 (October
1976), 733-742.

[16] Whitehead, A.N. and Russell, B. Principia Mathematica to
*56, Cambridge, 1970.

-39-

INITIAL DISTRIBUTION LIST

Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22314

Dudley Knox Library 2
Code 0142
Naval Postgraduate School
Monterey, CA 93940

Office of Research Administration 1
-- I,;Code 012A

Naval Postgraduate School
Monterey, CA 93940

Chairman, Gordon H. Bradley 40
Code 52Bz
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93940

Professor Bruce J. MacLennan 20
Code 52M1
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93940

If

Li

